If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4m^2-18m=0
a = -4; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·(-4)·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*-4}=\frac{0}{-8} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*-4}=\frac{36}{-8} =-4+1/2 $
| 30=w/5+14 | | 10k2+4=-3k | | 5k=3 | | y/2-10=24 | | r2-5r+2=0 | | –n+8.5=14.2 | | 6s–5s=13 | | -7x10=52 | | 4(u=1)+7=5(2u-3) | | −16t^2−20t+336 = 0 | | 3x-25=2×+15 | | 1/2x+2=20 | | 211=160-u | | 1/2x+2=-3/2x+8 | | 67-u=189 | | (11x+171)2+(11x−13)22(11x−11)(11x+171)=1 | | 2n2+n-15=0 | | 4^x-2=16^x+4 | | |9x-4|=86 | | -6+p=-17 | | 49(12x)=588 | | |v-1|=10 | | 10w–7w=15 | | 163=12-v | | 12/5=x/7 | | g(2)=(-3)+6(2) | | 42+3x=7x-5 | | 8x+20-4x+1=29 | | 7k2-12k-21=0 | | x+x+110+x+25=180 | | -4x(9+x)=-16 | | 15x+4=5x+4 |